Decomposition of $C_{r}[\overline{K}_{m}]$ into sunlet graphs

A. D. Akinola

Abstract— In this paper, it has been proved that $C_r[\overline{K}_m]$ (which is the wreath product of cycle and complement of a complete graph K_n can be decompose into sunlet graph L_n , n = rm if and only if $n \mid rm^2$ and m is even. 2000 Mathematics subject classification: 05B30, 05C70

Keywords: Graph decomposition, sunlet graph, wreath product of cycle and complement of a complete graph.

1 INTRODUCTION

We begin with a few definitions. A graph $C_r[\overline{K}_m]$ is a graph which arises from the cycle C_r by replacing each vertex *x* by *m* independent vertices and each edge *xy* by x'y', x'y'',..., x'y^{m1}; x''y',..., x''y^m

,..., x^my',..., x^my^m

A graph *G* with *q* edges is said to be decomposable into graph *H* if it can be written as the union of edge-disjoint copies of *H* so that every edge in *G* belongs to one and only one copy of *H*. Although much work has gone into decomposition of complete graphs into *k* cycles(See [4] for good survey). Alspach and Gavlas [1] have shown the necessary and sufficient condition for C_m to

decompose the complete graph K_n when *m* and *n* are either both odd and even.M. Sajna [2] have shown that for the case when *m* and *n* are of opposite parity.N.J. Cavenagh and etal [3] have worked on decomposition of complete multipartite graphs into cycles of even length.D. Froncek etal worked on decomposition of complete graph into blownup cycles $C_{r[}[\overline{K}_2]$. R. Haggkvist [5] gave lemma on cycle decomposition. N.J. Cavenagh [10] have shown that the graph $C_r[\overline{K}_m]$ can be decompose into cycle C_r . R. Laskar [11] has proved that the graph $C_r[\overline{K}_m]$ can be decompose into Cycles C_{rm} . R.Anitha etal [7] worked on N-sun (sunlet graph) decomposition of complete ,complete Bipartite and some harary graphs . Little attention has been paid to the same problem for the graph $C_r[\overline{K}_m]$. A significant and useful result is that of Sotteau [8] who discover necessary and sufficient conditions for the decomposition of complete bipartite graphs into *k* cycles.

2 DEFINITIONS AND TERMINOLOGY

2.1 Definition

Sunlet graph L_r is a graph with cycle $C_{r_{\!\!/\!\!2}}$

whereby each vertex of the cycle is attached to one pendant vertex .Each sunlet graph contains *r* vertices with *r* edges.

2.2 Definition

We will define a function on the vertices of a graph $G = C_r[\overline{K}_m]$ as $c: V(G) \rightarrow x_{N \times N}$ i.e for every vertex $x \in G$, $c(x) = x_{ii}$ where $i, j \in N$.

2.3 Definition

All graphs in this paper are simple .We use K_m to denote the complete graph on *m* vertices. \overline{K}_m denote the complement of K_m . An *r*-cycle is a cycle of length *r* and is denoted by C_r . Let $C_r[\overline{K}_m]$ stand for a cycle in which every vertex is replaced by *m* isolated vertices and every edge by $K_{m,m}$ and $C_r[\overline{K}_m]$ contains vertex x_{ij} ; i = 1, ..., r and j = 0, ..., m-1. Let L_n be a sunlet graph with *n* vertices and *n* edges.

2.4 Definition

Let *G* be a graph without loops and $L = (H_1, H_2, ..., H_m)$ a list of graphs. The list *L* is proper if *G* has a subgraph isomorphic with H_i , i = 1, 2, ..., m

and $|E(G)| = \sum_{i=1}^{m} |E(H_i)|$ where E(G)

denotes the edge set of G. The list L is said to pack G if G is the edgedisjoint union of the graphs

 $G_1, G_2, \dots, G_m (G = G_1 \oplus G_2 \oplus \dots \oplus G_m)$ where G_i is isomorphic with H_i for

i = 1,2,...,m . An even list where each entry occurs an even number of times. The graph *G* is said to have an *M*decomposition if the proper list (*M*,*M*,...,*M*) packs *G*, that is *M*/*G*.

3. DECOMPOSITION OF $C_r[\overline{K}_m]$ INTO EDGEDISJOINT SUNLET GRAPHS

3.1 Lemma

The graph $C_r[\overline{K_2}]$ can be decompose into 2 sunlet graphs with 2r vertices. *Proof.* From the definition of the graph $C_r[\overline{K_2}]$ (denoted by $C_r[2]$), each vertex xin C_r is replaced by a pair of two independent vertices x', x'' and each edge xy is replaced by four edges x'y', x'y'', x''y', x''y'' First form 2 cycles C'_r and C''_r with vertex set x'_i

and x''_{i}] respectively, i = 1, ..., r. Define a mapping A by $\phi(x'_{i}) = x''_{i+1}$ and $\phi(x''_{i}) = x'_{i+1}$, i is calculated modulo r.

 $\phi(x'_i)$ and $\phi(x''_i)$ represent pendant vertices.Attached each pendant vertices $\phi(x'_i)$ to each vertex x'_i in C'_r and $\phi(x''_i)$ to each vertex x''_i in C''_r , C''_r with pendant vertices $\phi(x'_i), \phi(x''_i)$ attached respectively gives 2 sunlet graphs with 2*r* vertices.Hence $C_r[\overline{K}_2]$ can be decompose into 2 sunlet graphs with 2*r* vertices

3.2 Lemma

Let r,m be positive even integers such that n = rm then $C_r[\overline{K}_m]$ can be decompose into m sunlet graph L_r .

Proof:

First observe that $C_r[\overline{K}_2]$ can be decompose into 2 sunlet graphs with 2r vertices. Then set m = 2t and decompose $C_r[\overline{K}_t]$ into t^2 cycles C_r . Denote vertices in *i* - th part of $C_r[\overline{K_t}]$ by x_{ii} for j = 0, ,...,t-1 and create t cycles $x_{ij}x_{2j}x_{3j}...x_{r-1j}x_{rj}$ for j = 0, 1, ..., t-1. Next combine these cycles into one cycle C_{rt} by replacing each edge $x_{1i}x_{2i}$ with $x_{1i}x_{2i+1}$. Now apply mappings ϕ_s for s =0, 1,..., t-1 defined as follows: $\phi_s(x_{ii}) = x_{ii}$ for *i* odd and $\phi_s(x_{ii}) = x_{ii+s}$ for *i* even. This is the desired decomposition into cycles C_{rt} .Now take each cycle C_{rt} , make it back into $C_{rt}[K_2]$ and decompose $C_{rt}[\overline{K}_2]$ into 2 sunlet graphs $L_{2rt} = L_{rm} = L_n$. Hence L_n decomposes $C_n[\overline{K}_m]$ for r,m even and n = rm. Each graph $C_{rr}[\overline{K}_2]$ gives 2 sunlet graphs L_n and we have t graph $C_{rt}[\overline{K}_2]$ which implies that we have 2t = m sunlet graphs L_n . Hence $C_r[K_m]$ decomposes into *m* sunlet graphs L_n .

3.3 Lemma

If *r* is a positive odd integers and *m* a positive even integers such that n = rm, then sunlet graph L_n .decomposes

 $C_r[\overline{K}_m]$. Proof:

We have *r*-1 even since *r* is odd.Set m = 2t. First create *k* cycles C_{r-1} in $C_{r-1}[\overline{K}_m]$ as in lemma (2).Then take complete tripartite graph $K_{t,t,t}$ with partite sets $X_i = \{x_{ij}\}$ for i = 1, r - 1, r and j = 0, 1, ..., t-1 and decompose it into triangles using well known construction via latin square.i.e Construct $t \times t$ latin square and consider each element in the form (a, b, c) where *a* denotes the row, *b* denotes the column and *c* denotes the entry with

 $0 \le a, b, c \le t - 1$. Each cycle is of the form (1, a), (r-1, b), (r, c)

Then for every triangle $x_{1a}x_{r-1b}x_{rc}$

replace the edge $x_{1a}x_{r-1b}$ in an

appropriate C_{r-1} by the edges $x_{r-1b}x_{rc}$

and $x_{rc}x_{1a}$ to obtain cycle C_r :

Therefore we have $C_r | C_r[\overline{K}_t]$.

Case 1 : Suppose
$$\frac{m}{2}$$
 is even.

Join 2 cycles C_r into one cycle to give C_{2r} : i.e

$$\begin{aligned} x_{ij} x_{2j} x_{3j} \dots x_{r-1j} x_{rj} x_{ij+1} x_{2j+1} \dots x_{rj+2}, \\ j &= 0, 1, \dots, t-2 \end{aligned}$$

Now apply mapping ϕ_s for s = 0, 1, ..., t-1 defined as follows:

 $\phi_s(x_{ij}) = x_{ij}$ for *i* odd and $\phi_s(x_{ij}) = x_{ij+s}$ for *i* even and *i* = *r*.

This is the desired decomposition into cycles C_{2r} . Now take each C_{2r} , make it into $C_{2r}[\overline{K}_2]$. and decompose it into two sunlet graphs L_{4r} .

Case 2: Suppose $\frac{m}{2}$, is odd Join the cycles *Cr* by replacing each edge

 $x_{1j}x_{2j}$ with $x_{1j}x_{2j+1}$. in order to create *t* cycles C_{rr} . Then apply mapping ϕ_s for s = 0, 1, ..., t - 1 defined as

follows:

$$\begin{split} \phi_s(x_{ij}) &= x_{ij} \quad \text{for } i \text{ odd and} \\ \phi_s(x_{ij}) &= x_{i+j+s} \quad \text{for } i \text{ even and } i = r.\text{m} \\ \text{Now take each } C_{rt} \text{,make it into } C_{rt}[\overline{K}_2] \\ \text{and decompose it into two sunlet} \\ \text{Graphs } L_{2rt} &= L_{rm} = L_n \text{ Hence sunlet} \\ \text{graph } L_n \text{ decompose } C_r[\overline{K}_m] \text{ for } r \text{ odd.} \\ \text{Therefore for } \frac{m/2}{2}, r \text{ odd, } C_r[\overline{K}_m] \text{ can} \\ \text{be decomposes into } m \text{ sunlet graph } L_n. \end{split}$$

3.4 Lemma

If sunlet graph L_n decomposes $C_r[\overline{K}_m]$, n = rm, then *m* is even. Proof: Each vertex in $C_r[\overline{K}_m]$ has degree 2*m*. For L_n to decompose $C_r[\overline{K}_m]$ with $n = rm_{3}w + p$ must be equal to 2m where w, p represent the number of times the vertex x_{ii} in $C_r[\overline{K}_m]$ appears in the decomposition with degree 3 and 1 respectively and w + p = m. Suppose m is odd, let there exist a vertex x_{ij} in $C_r[K_m]$ such that it exist in each sunlet graph L_n that decomposes $C_r[K_m]$. The sum of its degree in all the sunlet graphs L_n is 3w+p. In all the cases for the values of w and p, 3w+p 6= 2m. which implies that L_n does not decomposes $C_r[\overline{K}_m]$ for *m* odd but for all m even, 3w + p = 2m. The result also follows from [8] for r > 2. Hence the result.

3.5 Theorem

If $G = C_r[\overline{K}_m]$ can be decompose into cycle C_r then G(2) can be decompose into $2m^2$ sunlet graphs with 2r vertices. *Proof:* From the previous observation all we need to show is that $C_r[2]$ decomposes into 2 copies of sunlet graphs with 2rvertices.By Lemma (3.1), $C_r[\overline{K}_2]$ can be decompose into 2 sunlet graphs with 2rvertices.Hence we have $2m^2$ sunlet graph L_{2r} since we have m^2 cycles C_r from the cycle decomposition of $C_r[\overline{K}_m]$

3.6 Lemma

Necessary conditions for L_n to decompose $C_r[\overline{K}_m]$ whenever n = rm are: (a) m must be positive even integers. (b) $r \ge 3$ (c) The number of edges n divides the

number of edges in $C_r[\overline{K}_m]$.

Proof:

(a) The result follows from lemma (3.4) that *m* must be positive integers. (b) It follows from lemma (3.2) and (3.3). (c) It follows from the fact that the number of edges *n* of L_n has to be a multiple of *m* since the total number of edges in $C_r[\overline{K}_m]$ is rm^2 . Thus for such decomposition to exist, we have that n/rm.

3.7 Theorem

Let *m*, *n* be positive even integers and $r \ge 3$, n = rm, if L_n decomposes $C_r[\overline{K}_m]$ then the 2 sunlet graphs such that each vertex appears once with degree 3 and 1 in each sunlet graph L_n respectively is a 4 regular graph which can be decompose into 2 hamiltonian cycles.

Proof:

Suppose the sunlet graph L_n decomposes $C_r[\overline{K}_m]$, let m = 2t. Then by lemma (3.1) and lemma (3.2) and [8]; $Crt/C_r[\overline{K}_t]$. Let $G = C_r[\overline{K}_t]$. then by theorem (3.4) G(2) can be decompose into sunlet graphs with 2rt = rm vertices. The join of these 2 sunlet graphs gives 4 regular graphs which can be decompose into 2 hamilton cycles which follows from the result of Bermond etal [9].

3.8 Theorem

Let *r*, *m*, *n* be positive even integers satisfying $3 < r \cdot m$. If $C_r[\overline{K}_m]$, can be decomposed into sunlet graph L_n of length n = rm for all *m* in the range

 $r \leq m < 2r$ with $m(m-2) \equiv 0 \pmod{r}$, then $C_r[\overline{K}_m]$ can be decomposed into sunlet graph L_{μ} of length *n* for all $m \ge r$ with $m(m-2) \equiv 0 \pmod{r}.$ Proof: Suppose that $C_r[\overline{K}_m]$ can be decomposed into sunlet graphs L_n whenever $m(m-2) \equiv 0 \pmod{r}$ and $r \leq m < 2r$. Let *m* and *r* be positive even integers such that $m(m-2) \equiv 0 \pmod{r}$. Let m = pr + t for integers p with 0 < t < r. Observe that $m(m-2) \equiv 0 \pmod{r}$ implies that m or m-2 is a multiple of r. If m = pr+t then t is either 0 or 2. Since r is even, then $r(r-2) \equiv 0 \pmod{t}$ as well .Partition the edge set of $C_r[\overline{K}_m]$ into *m* sets such that each set induces a subgraph isomorphic to sunlet graph L_n in such a way that $\frac{mr}{t}$ vertices will have degree 3 and $\frac{mr}{r}$ vertices have degree 1.If there exist a vertex x_{ii} such that the degree of the vertex x_{ii} is either 3 or 1.i.e for L_n to decompose

$$C_r[\overline{K}_m], \sum_{i=1}^n \deg(x_{ij}) = 2m, x_{ij} \in V(L_n)$$

which follows from lemma (3.2).We now use induction on *p*. It is true from lemma (3.2) that L_n decomposes $C_r[\overline{K}_m]$ for p = 1.Suppose p > 1,assume that it is true for p = k.Suppose p = k+1,then m = (k + 1) r + t.

$$\sum_{i=1}^{n} \deg(x_{ij}) = \frac{3((k+1)r+t)}{2} + \frac{(k+1)r+t}{2}$$

It is true for p = k+ 1, therefore it is true for all integer p. Therefore L_n

decomposes $C_r[\overline{K}_m]$ for all m > r. Hence the result.

4 Main result

4.1 Theorem Let $G = C_r[\overline{K}_m]$ with rm^2 edges r, m even, n = rm, let H be a collection of *m* disjoint sunlet graphs on 2*n* vertices .Then $G(2) = L'_{2n} \oplus L''_{2n}$ where $L'_{2n} \approx L''_{2n} \approx H$. Therefore $H \mid G(2)$. Proof: First show that $G(2) = L'_{2n} \oplus L''_{2n}$. From lemma (3.2), L_n decomposes $C_r[\overline{K}_m]$ into *m* sunlet graph with *n* vertices.i.e $\bigcup_{k=1}^{m} L_{ni}$ decomposes $C_r[\overline{K}_m] = G$. Next show that L_{n2k} decomposes G(2). It is sufficient to show that $L_{nk}(2)$ can be decompose into 2 copies of L_{n2k} , k = 1,...,m. First form 2 cycles C'_{nk} and C''_{nk} with vertex set x'_{ii} and x''_{ii} . Define a mapping f by $f(x'_{ii}) = y'_{ii}$ and $f(x''_{ii}) = y''_{ii}$ where y'_{ii}, y''_{ii} represent the pendant vertices of $L_{nk}(2)$. Attached each pendant vertices $f(x'_{ii}), f(x''_{ii})$ to each vertex x'_{ii}, x''_{ii} in C'_{nk}, C''_{nk} respectively. C'_{nk}, C''_{nk} with pendant vertices $f(x'_{ii}), f(x''_{ii})$ attached respectively gives 2 sunlet graphs L'_{2nk} , L''_{2nk} . Therefore $L_{nk}(2)$ can be decompose into 2 sunlet graph L'_{2nk}, L''_{2nk} .i.e $L_{nk}(2) = L'_{2nk} \oplus L''_{2nk}$. Therefore $G(2) = \bigcup_{k=1}^{m} L_{nk}(2) =$ $\bigcup_{k=1}^{m} L'_{2nk} \oplus \bigcup_{k=1}^{m} L''_{2nk} = L'_{2n} \oplus L''_{2n}$ $L_{2n} = \bigcup_{i=1}^{m} L_{2nk}$.Hence $H \mid G(2)$ since $L'_{2_n} \approx L''_{2_n} \approx H$.

4.2. Theorem

Let $C_r[\overline{K}_m] = G$ with rm^2 edges, r, m even .Let H be a collection of mdisjoint sunlet graphs $L_n, n = rm$. Then

$$\begin{split} G(2) &= G^1 \oplus G^2 \oplus G^3 \oplus G^4 \\ \text{where} \\ G^1 &\approx G^2 &\approx G^3 &\approx G^4 &\approx H \ . \\ \text{Therefore} \ H \mid G(2) \end{split}$$

Proof:

Assume that *H* consists of disjoint sunlet graphs L_n with lengths $n_1, n_2, ..., n_{nm}$

Where $m \sum rm^2 = nm$. Let *G* consist of set of vertices x_{ii} , i = 1, ..., rAnd i = 0, 1, ..., m - 1with rm^2 edges and G(2) be a graph with $4rm^2$ edges and 2rm vertices.Let G^1, G^2, G^3, G^4 be the subgraph of G(2)with equal number of vertices and edges i.e G^1 contains the set of vertices $\{x'_{ii}\}$ with edge set $\{x'_{ii}, x'_{i+1i}\}$. G^2 contains the set of vertices $\{x''_{ii}\}$ with edge set $\{x''_{ii} x''_{i+1i}\}$. G^3 contains the set of vertices $\{x'_{ii}, x''_{i+1i}\}$ with edge set $\{x'_{ii}, x''_{i+1i}\}$ G^4 contains the set of vertices $\{x''_{ii}, x'_{i+1i}\}$ with edge set $\{x''_{ii} x'_{i+1i}\}$ Since each G^a , a = 1,2,3,4consists of rm^2 edges then G^a partition G(2) that is $G(2) = G^1 \oplus G^2 \oplus G^3 \oplus G^4$. Each G^{a} has sunlet graph decomposition which follows from lemma (3.2). Then

 $G^{a} = \bigcup_{k=1}^{m} L^{a}{}_{nk}$ Therefore $G^{a} \approx H$ Hence $H \mid G(2)$.

4.3 Corollary

IJSER © 2011 http://www.ijser.org Let $C_r[\overline{K}_m] = G$ be a graph with sunlet graph decomposition (that is a decomposition into edge-disjoint sunlet graphs). Then any proper even list of sunlet graphs L_n , n = rm packs G(2). Proof:

A sunlet graph in G(2) is a cycle together with pendant vertices attached to each vertex of the cycle.Assume that

$$\hat{o} = (L_{n1}, L_{n1}, L_{n1}, L_{n1}, L_{n2}, L_{n2}, L_{n2}, L_{n2}, L_{nm}, L_{n$$

is a proper even list of sunlet graphs on n vertices. Where *n* is the order of *G*. $L_{n1} \oplus L_{n2} \oplus ... \oplus L_{nm}$ be a sunlet graph decomposition of G.

Let $L_{nk} \approx L_n, k = 1, ..., m$. By theorem (4.2),

$$\begin{split} L_{nk}(2) &= \bigcup_{k=1}^{m} L^{a}{}_{nk}, a = 1,2,3,4 \text{ i.e} \\ L_{nk}(2) &= L^{1}{}_{nk} \oplus L^{2}{}_{nk} \oplus L^{3}{}_{nk} \oplus L^{4}{}_{nk} \\ \text{where } L^{1}{}_{nk} \approx L^{2}{}_{nk} \approx L^{3}{}_{nk} \approx L^{4}{}_{nk} \text{ Whence} \\ G(2) &= L_{n1}(2) \oplus L{}_{n2}(2) \oplus \ldots \oplus L_{nm}(2) \\ &= L^{1}{}_{n1} \oplus L^{2}{}_{n1} \oplus L^{3}{}_{n1} \oplus L^{4}{}_{n1} \oplus L^{1}{}_{n2} \oplus L^{2}{}_{n2} \oplus L^{3}{}_{n2} \\ \oplus L^{4}{}_{n2} \oplus \ldots \oplus L^{1}{}_{nm} \oplus L^{2}{}_{nm} \oplus L^{3}{}_{nm} \oplus L^{4}{}_{nm} \end{split}$$

Therefore proper even list of sunlet graphs packs G(2). Hence the result.

4.4 Theorem

If the graph $C_r[\overline{K}_m]$ decomposes into sunlet graph L_n , n = rm, r, m even, then the graph $C_r[\overline{K}_{ml}]$ decomposes into sunlet graphs L_n for any positive integer l. Proof: From the previous observation L_n decompose $C_r[\overline{K}_m]$, n = rm, r, m even. Next show that $L_n[\overline{K}_1]$, can be ndecompose into l^2 , copies of L_n . Label the vert ices of $L_n[\overline{K}_1]$, as $x^{a}_{ii}, 1 \le a \le l$, Then form the sunlet

graphs
$$L_n^1, ..., L_n^{l^2}$$
, from $L_n[\overline{K}_l]$, as follows:

Form the cycle $C_{\underline{n}}$ from $l \times l$, latin

square as

$$(1,u)(2,v)(3,u)...(\frac{m}{2}-1,v)(\frac{n}{2},\alpha)$$

where u is the row v is the column and α is the entry in the latin square. Next join each vertex of the cycle to pendant

 α in order to get

sunlet graph L_n . Therefore

 $L_n[\overline{K}_i] = L_n^{-1} \oplus ... \oplus L_n^{l^2}$. Hence sunlet graph L_n decomposes $C_r[\overline{K}_{ml}]$ for any positive integer 1.

4.5 Corollary

Let $G = C_r[\overline{K}_m]$ be a graph with sunlet graph decomposition then any even list of sunlet graph L_n packs G(l) for any positive integer I. Proof:

Assume that $C_r[\overline{K}_m]$ decomposes into m sunlet graph L_n , from theorem (4.4) $L_{\rm e}(l)$ decomposes into l^2 sunlet graph L_n for any positive integer *I*. $C_{r}[\overline{K}_{ml}]$ $= L_{n1}(l) \oplus L_{n2}(l) \oplus \ldots \oplus L_{nm}(l)$

 $=L_{n1}^{1}\oplus\ldots\oplus L_{n1}^{l^{2}}\oplus\ldots\oplus L_{nm}^{1}\oplus\ldots\oplus L_{l^{2}nm}^{l^{2}}$

Which is an even list of L_n . Hence any proper even list of sunlet graph L_n packs G(l) for any positive integer *l*.

4.6 Theorem If the graph $C_r[\overline{K}_m]$ decomposes into sunlet graph L_n , n = rm, m even, then the graph $C_r[\overline{K}_{ml}]$ decomposes into sunlet graph L_{nl} for any positive integer *l*. Proof: Suppose $C_r[\overline{K}_m]$ decomposes into m sunlet graphs L_n which follows from

lemma (3.2)and (3.3). It is sufficient to show that $L_n(l)$ can be decompose into sunlet graph L_{nl} where L_{nl} is a sunlet graph on nl vertices. Next form sunlet graph L_{nl} from $L_n(l)$. The cycle in L_n give rise to $C_n[\overline{K}_l]$ in $L_n(l)$. $C_n[\overline{K}_l]$ can be decompose into l cycles $C_{nl}/\frac{1}{2}$ by lemma (3.2), (3.3). Then join each vertex in each l cycles $C_{nl}/\frac{1}{2}$ to the pendant vertices x^l_{ij} to get l sunlet graphs L_{nl} i.e $L_n(l) = L_{nl1} \oplus L_{nl2} \oplus L_{nll}$

Hence L_{nl} decomposes $C_r[\overline{K}_{ml}]$ for any positive integer l.

4.7 Corollary

Let $G = C_r[\overline{K}_m]$ be a graph with sunlet graph decomposition, then any proper even list of sunlet graph L_{nl} packs G(l)for any positive integer l.

Proof:

Assume that proper list of sunlet graphs
$$\begin{split} \delta &= (L^{1}{}_{nl1}, L^{2}{}_{nl1}, ..., L^{l}{}_{nl1}, L^{1}{}_{nl2}, \\ & \dots, L^{l}{}_{nl2}, \dots, L^{1}{}_{nlm}, \dots, L^{l}{}_{nlm} \end{split}$$

is the proper list of sunlet graphs L_{nl} .Let $L_{n1} \oplus L_{n2} \oplus ... \oplus L_{nm}$ be a sunlet graph decomposition of G.i.e $L_{nk} \approx L_n, k = 1, 2, ..., m$. By theorem (4.6), $L_{nk}(l) = L^1_{nlk} \oplus L^2_{nlk} \oplus ... \oplus L^l_{nlk}$. $L^1_{nlk} \approx L^2_{nlk} \approx ... \approx L^l_{nlk}$ Whence $G(l) = L_{n1}(l) \oplus L_{n2}(l) \oplus ... \oplus L_{nln}(l)$ $= (L^1_{nl1} \oplus L^2_{nl1} \oplus ... \oplus L^l_{nl1} \oplus L^1_{nl2} \oplus$ $... \oplus L^l_{nl2} \oplus ... \oplus L^l_{nlm} \oplus ... \oplus L^l_{nlm}$ efore any even list of sunlet graphs L_{nl} packs G(l). 4.8 Theorem

The graph $C_r[\overline{K}_m]$ can be decompose into sunlet graph L_n , if and only if ndivides rm^2 , n = rm and m is even. *Proof:* The necessary condition follows from

lemma (3.6) that is the number of edges in $C_r[\overline{K}_m]$ is rm^2 , so *n* must divides

 rm^2 for a decomposition to occur.If n > rm, a vertex must be repeated within each sunlet graph which is impossible. If n < rm, then there is a vertex which does not appear in the sunlet graph which is also impossible for such decomposition to occur. So n = rm.

To show that if $n \mid rm^2$ then L_n

decomposes $C_r[\overline{K}_m]$, it is sufficient to show that if $r \mid n$ and $m \mid n$ then

 $n \mid rm^2$.

Case 1: *r* divides *n*

Write $n = rq^2 t$ where *t*, *q* is a positive integer and from lemma (3.6),

 $rq^{2}t \mid rm^{2}$, so $qt \mid m$, and we can write

m = qq't .Also $rq^2t = rqq't$,so

q = q'.Next consider $C_r[\overline{K}_t]$, the degree of each vertex is 2t which is even.Each vertex appears t times in the sunlet graph L_{rt} decomposition which follows from lemma (3.2) and lemma (3.3).By theorem (4.4), the graph $C_r[\overline{K}_{qq't}]$ can be decompose into sunlet graph L_{rt} .Applying theorem (4.6), we have that

 $C_r[\overline{K}_{qq't}]$ decomposes into sunlet graph $L_{rqq't} = L_{rq^2t}$ for q = q'. Hence if r

divides *n* then $C_r[\overline{K}_m]$ has sunlet graph decomposition.

Case 2: *m* divides *n* Write n = mt' for any positive integer

 $t \ge 3$ and m = qq'

Case 2a: Suppose $m \equiv 2 \pmod{4}$ and let

q = 2, then $q' \equiv 1 \pmod{q}$.By lemma (3.1)

 $C_{i'}[K_{qq'}]$ decomposes into sunlet graph

 $L_{t'a}$ and by theorem (4.6), $C_{t'}[\overline{K}_{qq'}]$

decomposes into sunlet graph $L_{t'qq'} = L_{t'm}$. Hence sunlet graph L_n decomposes $C_r[\overline{K}_m]$ for r = t'.

Case 2b: Suppose $m \equiv 0 \pmod{4}$. Let q =2, then $q' \equiv 0 \pmod{q}$. $C_{t'}[\overline{K}_{aa'}]$ decomposes into sunlet graph $L_{t'a}$ by lemma (3.1),also $C_{t'}[\overline{K}_{qq'}]$ decomposes into sunlet graph $L_{t'aa'} = L_{t'm}$ by theorem (4.6). Hence sunlet graph L_n decomposes $C_r[\overline{K}_m]$ for r = t'. Since sunlet graph $L_{raa'}$, decomposes $C_r[\overline{K}_{aa'}]$ for both q' =positive odd integer and q' =positive even integer, therefore it is true for all positive integer q'. Hence if m divides n then $C_r[K_m]$ has sunlet graph decomposition. Since q = 2 all through for m = qq', it follows that for sunlet graph L_n to decompose $C_r[\overline{K}_m]$, m must be an even integer which also follows from lemma (3.4).

References

[1] B. Alspach, H. Gavlas, Cyle decomposition of Kn and Kn i I.J. Combin. Theory Ser.B,81 (2001), 77-99. [2] M. Sajna, Cycle decomposition of Kn and Kn ; I, Ph.D Thesis, Simon Fraser University 1999. [3] N.J. Cavenagh, E.J. Billington, Decomposition of complete multipartite graphs into cycles of even length; Graphs and Combinatorics (2000) 16, 49-65. [4] C.C. Linder, C.A. Rodger, Decomposition into cycles II; Cycle systems in contemporary design theory: a collectuin of surveys, J.H. Dinitz and D.R. Stinson (Editors), Wiley, New York, 1992, 325-369. [5] R. Haggkvist, A lemma on cycle decompositions; Annals of Discrete Mathematics 27 (1985), 227-232.

[6] D. Froncek, P. Kovar, M. Kubesa, Decomposition of complete graphs into blown-up cycles *Cm*[2]; Discrete Mathematics 310 (2010),1003-1015.
[7] R. Anitha, R.S. Lekshmi, N-sun decomposition of complete,complete bipartite and some harary graphs; Int. J. of Computational and Mathematical

sciences 2 Winter (2008).

[8] D. Sotteau; Decomposition of *Km;n* ³*K*^a *m;n* into cycles (circuit) of length 2*k*, Journal of Comb. Theory, Series B 30,(1981),75-81.

[9] J.C. Bermond, O. Favaron, M. Maheo, Hamilton decomposition of cayley graphs of degree 4;J. Comb. Theory Ser. B 46,(1989),142-153.

[10] N.J. Cavenagh, Decomposition of complete tripartite graphs into *k* cycles; Australasian J. of Combinatorics 18 (1998) 193-200.

[11] R. Laskar, Decomposition of some composite graphs into hamilton cycles, Pro. 5th Hungarian coll. keszthely 1976, North Holland, 1978, 705-716.

A. D. Akinola Department of Mathematics, College of Natural Science, University of Agriculture, Abeokuta,Ogun State, Nigeria. email:abolaopeyemi@yahoo.co.uk