Decomposition of $\left.c_{l} \mid \bar{K}_{m}\right]$ into sunlet graphs

A. D. Akinola

Abstract- In this paper,it has been proved that $C_{r}\left[\bar{K}_{m}\right]$ (which is the wreath product of cycle and complement of a complete graph K_{n} can be decompose into sunlet graph $L_{n}, \mathrm{n}=\mathrm{rm}$ if and only if $n \mid \mathrm{rm}^{2}$ and m is even.

2000 Mathematics subject classification: 05B30, 05C70
Keywords: Graph decomposition,sunlet graph, wreath product of cycle and complement of a complete graph.

1 INTRODUCTION

We begin with a few definitions. A graph $C_{r}\left[\bar{K}_{m}\right]$ is a graph which arises from the cycle C_{r} by replacing each vertex x by m independent vertices and each edge $x y$ by $x^{\prime} y^{\prime}, x^{\prime} y^{\prime}$,,.,$x^{\prime} y^{m 1} ; x^{\prime \prime} y^{\prime}, \ldots, x^{\prime \prime} y^{m}$ $, \ldots, x^{m} y^{\prime}, \ldots, x^{m} y^{m}$
A graph G with q edges is said to be decomposable into graph H if it can be written as the union of edge-disjoint copies of H so that every edge in G belongs to one and only one copy of H. Although much work has gone into decomposition of complete graphs into k cycles(See [4] for good survey).Alspach and Gavlas [1] have shown the necessary and sufficient condition for C_{m} to decompose the complete graph K_{n} when m and n are either both odd and even.M. Sajna [2] have shown that for the case when m and n are of opposite parity.N.J. Cavenagh and etal [3] have worked on decomposition of complete multipartite graphs into cycles of even length.D. Froncek etal worked on decomposition of complete graph into blownup cycles $C_{r[}\left[\bar{K}_{2}\right]$. R. Haggkvist [5] gave lemma on cycle decomposition. N.J. Cavenagh [10] have shown that the graph $C_{r}\left[\bar{K}_{m}\right]$ can be decompose into cycle C_{r}. R. Laskar [11] has proved that the graph $C_{r}\left[\bar{K}_{m}\right]$ can be decompose into

Cycles $C_{r m}$. R.Anitha etal [7] worked on N -sun (sunlet graph) decomposition of complete ,complete Bipartite and some harary graphs. Little attention has been paid to the same problem for the graph $C_{r}\left[\bar{K}_{m}\right]$. A significant and useful result is that of Sotteau [8] who discover necessary and sufficient conditions for the decomposition of complete bipartite graphs into k cycles.

2 DEFINITIONS AND TERMINOLOGY

2.1 Definition

Sunlet graph L_{r} is a graph with cycle $C_{r / 2}$
whereby each vertex of the cycle is attached to one pendant vertex. Each sunlet graph contains r vertices with r edges.

2.2 Definition

We will define a function on the vertices of a graph $G=C_{r}\left[\bar{K}_{m}\right]$ as

$$
c: V(G) \rightarrow x_{N \times N} \text { i.e for every vertex }
$$

$$
x \in G, c(x)=x_{i j} \text { where } i, j \in N
$$

2.3 Definition

All graphs in this paper are simple .We use K_{m} to denote the complete graph on m vertices. \bar{K}_{m} denote the complement of K_{m}. An r-cycle is a cycle
of length r and is denoted by C_{r}. Let $C_{r}\left[\bar{K}_{m}\right]$ stand for a cycle in which every vertex is replaced by m isolated vertices and every edge by $K_{m, m}$ and $C_{r}\left[\bar{K}_{m}\right]$ contains vertex $x_{i j} ; i=1, \ldots, r$ and $j=$ $0, \ldots, m-1$. Let L_{n} be a sunlet graph with n vertices and n edges.

2.4 Definition

Let G be a graph without loops and $L=\left(H_{1}, H_{2}, \ldots, H_{m}\right)$ a list of graphs.The list L is proper if G has a subgraph isomorphic with $H_{i}, i=1,2, \ldots, m$
and $|E(G)|=\sum_{i=1}^{m}\left|E\left(H_{i}\right)\right|$ where $E(G)$
denotes the edge set of G.The list L is said to pack G if G is the edgedisjoint union of the graphs $G_{1}, G_{2}, \ldots, G_{m}\left(G=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{m}\right)$ where G_{i} is isomorphic with H_{i} for $i=1,2, \ldots, m$.An even list where each entry occurs an even number of times. The graph G is said to have an M decomposition if the proper list (M, M, \ldots, M) packs G, that is $M \mid G$.
3. DECOMPOSITION OF $C_{r}\left[\bar{K}_{m}\right]$ INTO EDGEDISJOINT SUNLET GRAPHS

3.1 Lemma

The graph $C_{r}\left[\bar{K}_{2}\right]$ can be decompose into 2 sunlet graphs with $2 r$ vertices. Proof.
From the definition of the graph $C_{r}\left[\bar{K}_{2}\right]$ (denoted by $C_{r}[2]$), each vertex x in C_{r} is replaced by a pair of two independent vertices $x^{\prime}, x^{\prime \prime}$ and each edge $x y$ is replaced by four edges $x^{\prime} y^{\prime}, x^{\prime} y^{\prime \prime}, x^{\prime \prime} y^{\prime}, x^{\prime \prime} y^{\prime \prime}$ First form 2 cycles C_{r}^{\prime} and $C^{\prime \prime}{ }_{r}$ with vertex set x_{i}^{\prime} and $x^{\prime \prime}{ }_{i}$] respectively, $i=1, \ldots, r$. Define a mapping $A ́$ by $\phi\left(x_{i}^{\prime}\right)=x^{\prime \prime}{ }_{i+1}$ and $\phi\left(x^{\prime \prime}{ }_{i}\right)=x_{i+1}^{\prime}, i$ is calculated modulo r.
$\phi\left(x_{i}^{\prime}\right)$ and $\phi\left(x_{i}^{\prime \prime}\right)$ represent pendant vertices.Attached each pendant vertices $\phi\left(x_{i}^{\prime}\right)$ to each vertex x_{i}^{\prime} in $C^{\prime}{ }_{r}$ and $\phi\left(x^{\prime \prime}{ }_{i}\right)$ to each vertex $x^{\prime \prime}{ }_{i}$ in $C^{\prime \prime}{ }_{r}, C^{\prime \prime}{ }_{r}$ with pendant vertices $\phi\left(x_{i}^{\prime}\right), \phi\left(x^{\prime \prime}{ }_{i}\right)$ attached respectively gives 2 sunlet graphs with $2 r$ vertices.Hence $C_{r}\left[\bar{K}_{2}\right]$ can be decompose into 2 sunlet graphs with $2 r$ vertices

3.2 Lemma

Let r, m be positive even integers such that $n=r m$ then $C_{r}\left[\bar{K}_{m}\right]$ can be decompose into m sunlet graph L_{r}.

Proof:

First observe that $C_{r}\left[\bar{K}_{2}\right]$ can be decompose into 2 sunlet graphs with $2 r$ vertices.Then set $m=2 t$ and decompose $C_{r}\left[\bar{K}_{t}\right]$ into t^{2} cycles C_{r}. Denote vertices in i-th part of $C_{r}\left[\bar{K}_{t}\right]$ by $x_{i j}$ for $j=0$, $, \ldots, t-1$ and create t cycles $x_{i j} x_{2 j} x_{3 j} \ldots x_{r-1 j} x_{r j}$ for $j=0,1, \ldots, t-1$. Next combine these cycles into one cycle $C_{r t}$ by replacing each edge $x_{1 j} x_{2 j}$ with $x_{1 j} x_{2 j+1}$. Now apply mappings ϕ_{s} for $s=$ $0,1, \ldots, t-1$ defined as follows: $\phi_{s}\left(x_{i j}\right)=x_{i j}$ for i odd and
$\phi_{s}\left(x_{i j}\right)=x_{i j+s}$ for i even. This is the desired decomposition into cycles $C_{r t}$. Now take each cycle $C_{r t}$, make it back into $C_{r t}\left[\bar{K}_{2}\right]$ and decompose $C_{r t}\left[\bar{K}_{2}\right]$ into 2 sunlet graphs $L_{2 r t}=L_{r m}=L_{n}$. Hence L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ for r, m even and $n=r m$.
Each graph $C_{r t}\left[\bar{K}_{2}\right]$ gives 2 sunlet graphs L_{n} and we have t graph $C_{r t}\left[\bar{K}_{2}\right]$ which implies that we have $2 t=m$ sunlet graphs L_{n}. Hence $C_{r}\left[\bar{K}_{m}\right]$ decomposes into m sunlet graphs L_{n}.

3.3 Lemma

If r is a positive odd integers and m a positive even integers such that $n=$ $r m$,then sunlet graph L_{n}. decomposes $C_{r}\left[\bar{K}_{m}\right]$.
Proof:
We have r - 1 even since r is odd.Set $m=2 t$.
First create k cycles C_{r-1} in $C_{r-1}\left[\bar{K}_{m}\right]$ as in lemma (2).Then take complete tripartite graph $K_{t, t, t}$ with partite sets $X_{i}=\left\{x_{i j}\right\}$ for $i=1, r-1, r$ and $j=0,1, \ldots, t-1$ and decompose it into triangles using well known construction via latin square.i.e Construct $t \times t$ latin square and consider each element in the form (a, b, c) where a denotes the row, b denotes the column and c denotes the entry with
$0 \leq a, b, c \leq t-1$. Each cycle is of the form $(1, a),(r-1, b),(r, c)$
Then for every triangle $x_{1 a} x_{r-1 b} x_{r c}$
replace the edge $x_{1 a} x_{r-1 b}$ in an appropriate C_{r-1} by the edges $x_{r-1 b} x_{r c}$ and $x_{r c} x_{1 a}$ to obtain cycle C_{r} :
Therefore we have $C_{r} \mid C_{r}\left[\bar{K}_{t}\right]$.
Case 1 :Suppose $\frac{m}{2}$ is even.
Join 2 cycles C_{r} into one cycle to give
$C_{2 r}$: i.e
$x_{i j} x_{2 j} x_{3 j} \ldots x_{r-1 j} x_{r j} x_{i j+1} x_{2 j+1} \ldots x_{r j+2}$,
$j=0,1, \ldots, t-2$
Now apply mapping ϕ_{s} for $s=0,1, \ldots$,
t - 1 defined as follows:
$\phi_{s}\left(x_{i j}\right)=x_{i j}$ for i odd and $\phi_{s}\left(x_{i j}\right)=x_{i j+s}$ for i even and $i=r$.
This is the desired decomposition into cycles $C_{2 r}$. Now take each $C_{2 r}$, make it into $C_{2 r}\left[\bar{K}_{2}\right]$. and decompose it into two sunlet graphs $L_{4 r}$.
Case 2: Suppose $\frac{m}{2}$, is odd
Join the cycles $C r$ by replacing each edge $x_{1 j} x_{2 j}$ with $x_{1 j} x_{2 j+1}$. in order to
create t cycles $C_{r t}$.Then apply mapping
ϕ_{s} for $s=0,1, \ldots t-1$ defined as
follows:
$\phi_{s}\left(x_{i j}\right)=x_{i j}$ for i odd and
$\phi_{s}\left(x_{i j}\right)=x_{i+j+s}$ for i even and $i=r . \mathrm{m}$
Now take each $C_{r t}$, make it into $C_{r t}\left[\bar{K}_{2}\right]$ and decompose it into two sunlet
Graphs $L_{2 r t}=L_{r m}=L_{n}$ Hence sunlet graph L_{n} decompose $C_{r}\left[\bar{K}_{m}\right]$ for r odd.
Therefore for $m / 2, r$ odd, $C_{r}\left[\bar{K}_{m}\right]$ can be decomposes into m sunlet graph L_{n}.

3.4 Lemma

If sunlet graph L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$, $n=r m$, then m is even.
Proof:
Each vertex in $C_{r}\left[\bar{K}_{m}\right]$ has degree $2 m$.
For L_{n} to decompose $C_{r}\left[\bar{K}_{m}\right]$ with
$n=r m, 3 w+p$ must be equal to $2 m$ where w , p represent the number of times the vertex $x_{i j}$ in $C_{r}\left[\bar{K}_{m}\right]$ appears in the decomposition with degree 3 and 1 respectively and $w+p=m$.Suppose m is odd, let there exist a vertex $x_{i j}$ in $C_{r}\left[\bar{K}_{m}\right]$ such that it exist in each sunlet graph L_{n} that decomposes $C_{r}\left[\bar{K}_{m}\right]$.The sum of its degree in all the sunlet graphs L_{n} is $3 w+p$. In all the cases for the values of w and p, $3 w+p 6=2 m$.which implies that L_{n} does not decomposes $C_{r}\left[\bar{K}_{m}\right]$ for m odd but for all m even, $3 w+p=2 m$. The result also follows from [8] for $r>2$. Hence the result.

3.5 Theorem

If $G=C_{r}\left[\bar{K}_{m}\right]$ can be decompose into
cycle C_{r} then $G(2)$ can be decompose into $2 m^{2}$ sunlet graphs with $2 r$ vertices. Proof:
From the previous observation all we need to show is that $C_{r}[2]$ decomposes into 2 copies of sunlet graphs with $2 r$ vertices.By Lemma (3.1), $C_{r}\left[\bar{K}_{2}\right]$ can be decompose into 2 sunlet graphs with $2 r$ vertices.Hence we have $2 m^{2}$ sunlet
graph $L_{2 r}$ since we have m^{2} cycles C_{r} from the cycle decomposition of $C_{r}\left[\bar{K}_{m}\right]$

3.6 Lemma

Necessary conditions for L_{n} to decompose $C_{r}\left[\bar{K}_{m}\right]$ whenever $n=r m$ are:
(a) m must be positive even integers.
(b) $r \geq 3$
(c) The number of edges n divides the number of edges in $C_{r}\left[\bar{K}_{m}\right]$.
Proof:
(a) The result follows from lemma (3.4) that m must be positive integers.
(b) It follows from lemma (3.2) and (3.3).
(c) It follows from the fact that the number of edges n of L_{n} has to be a
multiple of m since the total number of edges in $C_{r}\left[\bar{K}_{m}\right]$ is rm^{2}. Thus for such decomposition to exist, we have that $n \mid r m$.

3.7 Theorem

Let m, n be positive even integers and $r \geq 3, n=r m$,if L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ then the 2 sunlet graphs such that each vertex appears once with degree 3 and 1 in each sunlet graph L_{n} respectively is a 4 regular graph which can be decompose into 2 hamiltonian cycles.

Proof:
Suppose the sunlet graph L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$,let $m=2 t$.Then by lemma (3.1) and lemma (3.2) and [8]; $C r t \mid C_{r}\left[\bar{K}_{t}\right]$.Let $G=C_{r}\left[\bar{K}_{t}\right]$. then by theorem (3.4) $G(2)$ can be decompose into sunlet graphs with $2 r t=r m$ vertices.The join of these 2 sunlet graphs gives 4 regular graphs which can be decompose into 2 hamilton cycles which follows from the result of Bermond etal [9].

3.8 Theorem

Let r, m, n be positive even integers satisfying $3<r \cdot m$. If $C_{r}\left[\bar{K}_{m}\right]$, can be decomposed into sunlet graph L_{n} of length $n=r m$ for all m in the range
$r \leq m<2 r$ with
$m(m-2) \equiv 0(\bmod r)$, then $C_{r}\left[\bar{K}_{m}\right]$ can be decomposed into sunlet graph L_{n} of length n for all $m \geq r$ with $m(m-2) \equiv 0(\bmod r)$.
Proof:
Suppose that $C_{r}\left[\bar{K}_{m}\right]$ can be decomposed into sunlet graphs L_{n} whenever $m(m-2) \equiv 0(\bmod r)$ and $r \leq m<2 r$.Let m and r be positive even integers such that
$m(m-2) \equiv 0(\bmod r)$.Let $m=p r+t$ for integers p with $0<t<r$. Observe that $m(m-2) \equiv 0(\bmod r)$ implies that m or $m-2$ is a multiple of r. If $m=p r+t$ then t is either 0 or 2 .Since r is even, then $r(r-2) \equiv 0(\bmod t)$ as well .Partition the edge set of $C_{r}\left[\bar{K}_{m}\right]$ into m sets such that each set induces a subgraph isomorphic to sunlet graph L_{n} in such a way that $\frac{m r}{t}$ vertices will have degree 3 and $\frac{m r}{t}$ vertices have degree 1.If there exist a vertex $x_{i j}$ such that the degree of the vertex $x_{i j}$ is either 3 or 1.i.e for L_{n} to decompose
$C_{r}\left[\bar{K}_{m}\right], \sum_{i=1}^{n} \operatorname{deg}\left(x_{i j}\right)=2 m, x_{i j} \in V\left(L_{n}\right)$
which follows from lemma (3.2).We now use induction on p.It is true from lemma (3.2) that L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ for $p=1$. Suppose $p>1$, assume that it is true for $p=k$.Suppose $p=k+1$, then $m=(k+1) r+t$.

$$
\begin{aligned}
& , \sum_{i=1}^{n} \operatorname{deg}\left(x_{i j}\right)=\frac{3((k+1) r+t)}{2}+\frac{(k+1) r+t}{2} \\
& =2((k+1) r+t)=2 m
\end{aligned}
$$

It is true for $p=k+1$,therefore it is true for all integer p. Therefore L_{n}
decomposes $C_{r}\left[\bar{K}_{m}\right]$
for all $m>r$.Hence the result.

4 Main result

4.1 Theorem

Let $G=C_{r}\left[\bar{K}_{m}\right]$ with $r m^{2}$
edges r, m even, $n=r m$, let H be a collection of m disjoint sunlet graphs on $2 n$
vertices. Then $G(2)=L^{\prime}{ }_{2 n} \oplus L^{\prime \prime}{ }_{2 n}$
where $L_{2 n}^{\prime} \approx L^{\prime \prime}{ }_{2 n} \approx H$.
Therefore $H \mid G(2)$.
Proof:
First show that $G(2)=L_{2 n}^{\prime} \oplus L^{\prime \prime}{ }_{2 n}$. From
lemma (3.2), L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ into m sunlet graph with n vertices.i.e
$\cup_{k=1}{ }^{m} L_{n i}$ decomposes $C_{r}\left[\bar{K}_{m}\right]=G$.Next show that $L_{n 2 k}$ decomposes $G(2)$.It is sufficient to show that $L_{n k}(2)$ can be decompose into 2 copies of $L_{n 2 k}$
$, k=1, \ldots, m$. First form 2 cycles $C^{\prime}{ }_{n k}$ and $C^{\prime \prime}{ }_{n k}$ with vertex set $x_{i j}^{\prime}$ and $x^{\prime \prime}{ }_{i j}$. Define a mapping f by

$$
f\left(x_{i j}^{\prime}\right)=y_{i j}^{\prime} \text { and } f\left(x_{i j}^{\prime \prime}\right)=y_{i j}^{\prime \prime}
$$

where $y_{i j}^{\prime}, y^{\prime \prime}{ }_{i j}$ represent the pendant vertices of $L_{n k}(2)$. Attached each pendant vertices $f\left(x_{i j}^{\prime}\right), f\left(x^{\prime \prime}{ }_{i j}\right)$ to each vertex $x_{i j}^{\prime}, x^{\prime \prime}{ }_{i j}$ in $C^{\prime}{ }_{n k}, C^{\prime \prime}{ }_{n k}$ respectively. $C^{\prime}{ }_{n k}, C^{\prime \prime}{ }_{n k}$ with pendant vertices
$f\left(x_{i j}^{\prime}\right), f\left(x^{\prime \prime}{ }_{i j}\right)$
attached respectively gives 2 sunlet
graphs $L_{2 n k}^{\prime}, L^{\prime \prime}{ }_{2 n k}$. Therefore $L_{n k}(2)$
can be decompose into 2 sunlet graph
$L_{2 n k}^{\prime}, L^{\prime \prime}{ }_{2 n k}$.i.e
$L_{n k}(2)=L_{2 n k}^{\prime} \oplus L^{\prime \prime}{ }_{2 n k}$. Therefore
$G(2)=\bigcup_{k=1}^{m} L_{n k}(2)=$
$\bigcup_{k=1}^{m} L_{2 n k}^{\prime} \oplus \bigcup_{k=1}^{m} L_{2 n k}^{\prime \prime}=L_{2 n}^{\prime} \oplus L^{\prime \prime \prime}{ }_{2 n}$
Where
$L_{2 n}=\bigcup_{k=1}^{m} L_{2 n k}$. Hence $H \mid G(2)$ since
$L^{\prime}{ }_{2 n} \approx L^{\prime}{ }_{2 n} \approx H$.

4.2. Theorem

Let $C_{r}\left[\bar{K}_{m}\right]=G$ with $r m^{2}$
edges, r, m even. Let H be a collection of m disjoint sunlet graphs $L_{n}, n=r m$. Then

$$
G(2)=G^{1} \oplus G^{2} \oplus G^{3} \oplus G^{4}
$$

where
$G^{1} \approx G^{2} \approx G^{3} \approx G^{4} \approx H$.
Therefore $H \mid G(2)$
Proof:
Assume that H consists of disjoint sunlet graphs L_{n} with lengths $n_{1}, n_{2}, \ldots, n_{n m}$

Where $m \sum_{k=1} r m^{2}=n m$. Let G consist of set of vertices $x_{i j}, i=1, \ldots, r$
And $j=0,1, \ldots, m-1$
with rm^{2} edges and $G(2)$ be a graph with $4 \mathrm{rm}^{2}$ edges and 2 rm vertices.Let $G^{1}, G^{2}, G^{3}, G^{4}$ be the subgraph of $G(2)$ with equal number of vertices and edges i.e
G^{1} contains the set of vertices $\left\{x_{i j}^{\prime}\right\}$
with edge set $\left\{x_{i j}^{\prime} x_{i+1 j}^{\prime}\right\}$.
G^{2} contains the set of vertices $\left\{x^{\prime \prime}{ }_{i j}\right\}$
with edge set $\left\{x^{\prime \prime}{ }_{i j} x^{\prime \prime}{ }_{i+1 j}\right\}$.
G^{3} contains the set of vertices
$\left\{x_{i j}^{\prime}, x^{\prime \prime}{ }_{i+1 j}\right\}$ with edge set $\left\{x_{i j}^{\prime} x^{\prime \prime}{ }_{i+1 j}\right\} 2$
G^{4} contains the set of
vertices $\left\{x^{\prime \prime}{ }_{i j}, x_{i+1 j}^{\prime}\right\}$ with edge set
$\left\{x^{\prime \prime}{ }_{i j} x^{\prime}{ }_{i+1 j}\right\}$
Since each $G^{a}, a=1,2,3,4$
consists of rm^{2} edges then G^{a}
partition $G(2)$ that is
$G(2)=G^{1} \oplus G^{2} \oplus G^{3} \oplus G^{4}$.
Each G^{a} has sunlet graph decomposition which follows from lemma (3.2).Then

$$
G^{a}=\bigcup_{k=1}^{m} L^{a}{ }_{n k}
$$

Therefore $G^{a} \approx H$
Hence
$H \mid G(2)$.
4.3 Corollary

Let $C_{r}\left[\bar{K}_{m}\right]=G$ be a graph with sunlet graph decomposition (that is a decomposition into edge-disjoint sunlet graphs).Then any proper even list of sunlet graphs $L_{n}, n=r m$ packs $G(2)$.
Proof:
A sunlet graph in $G(2)$ is a cycle together with pendant vertices attached to each vertex of the cycle.Assume that $\partial=\left(L_{n 1}, L_{n 1}, L_{n 1}, L_{n 1}, L_{n 2}, L_{n 2}, L_{n 2}, L_{n 2}, L_{n m}, L_{n m}, L_{\text {nvertthees }}\right)_{x_{i j}}^{l}$ for $l=\alpha$ in order to get
is a proper even list of sunlet graphs on n vertices.Where n is the order of G.
$L_{n 1} \oplus L_{n 2} \oplus \ldots \oplus L_{n m}$ be a sunlet graph decomposition of G.
Let $L_{n k} \approx L_{n}, k=1, \ldots, m$.By theorem
(4.2),
$L_{n k}(2)=\bigcup_{k=1}^{m} L^{a}{ }_{n k}, a=1,2,3,4$ i.e
$L_{n k}(2)=L_{n k}^{1} \oplus L_{n k}^{2} \oplus L_{n k}^{3} \oplus L_{n k}^{4}$
where $L_{n k}^{1} \approx L_{n k}^{2} \approx L^{3}{ }_{n k} \approx L_{n k}^{4}$ Whence
$G(2)=L_{n 1}(2) \oplus L_{n 2}(2) \oplus \ldots \oplus L_{n m}(2)$
$=L^{1}{ }_{n 1} \oplus L^{2}{ }_{n 1} \oplus L^{3}{ }_{n 1} \oplus L^{4}{ }_{n 1} \oplus L_{n 2}^{1} \oplus L^{2}{ }_{n 2} \oplus L^{3}{ }_{n 2}$
$\oplus L^{4}{ }_{n 2} \oplus \ldots \oplus L^{1}{ }_{n m} \oplus L^{2}{ }_{n m} \oplus L^{3}{ }_{n m} \oplus L^{4}{ }_{n m}$
Therefore proper even list of sunlet graphs packs $G(2)$.Hence the result .
4.4 Theorem

If the graph $C_{r}\left[\bar{K}_{m}\right]$ decomposes into sunlet graph $L_{n}, n=r m, r, m$ even,
then the graph $C_{r}\left[\bar{K}_{m l}\right]$ decomposes into sunlet graphs L_{n} for any positive integer l.
Proof:
From the previous observation L_{n}
decompose $C_{r}\left[\bar{K}_{m}\right], n=r m, r, m$ even.
Next show that $L_{n}\left[\bar{K}_{l}\right]$, can be ndecompose into l^{2}, copies of L_{n}.
Label the vert ices of $L_{n}\left[\bar{K}_{l}\right]$, as $x^{a}{ }_{i j}, 1 \leq a \leq l$, Then form the sunlet
graphs $L^{1}{ }_{n}, \ldots, L^{l^{2}}{ }_{n}$, from $L_{n}\left[\bar{K}_{l}\right]$, as
follows:
Form the cycle $C_{\frac{n}{2}}$ from $l \times l$, latin
square as
$(1, u)(2, v)(3, u) \ldots\left(\frac{m}{2}-1, v\right)\left(\frac{n}{2}, \alpha\right)$,
where u is the row,v is the column and α is the entry in the latin square. Next join each vertex of the cycle to pendant
sunlet graph L_{n}.Therefore
$L_{n}\left[\bar{K}_{l}\right]=L_{n}{ }^{1} \oplus \ldots \oplus L^{l^{2}}{ }_{n}$.Hence sunlet graph L_{n} decomposes $C_{r}\left[\bar{K}_{m l}\right]$ for any positive integer l.
4.5 Corollary

Let $G=C_{r}\left[\bar{K}_{m}\right]$ be a graph with sunlet graph decomposition then any even list of sunlet graph L_{n} packs $G(l)$ for any positive integer l.
Proof:
Assume that $C_{r}\left[\bar{K}_{m}\right]$ decomposes into m sunlet graph L_{n}, from theorem (4.4)
$L_{n}(l)$ decomposes into l^{2} sunlet graph
L_{n} for any positive integer l.
$C_{r}\left[\bar{K}_{m l}\right]$
$=L_{n 1}(l) \oplus L_{n 2}(l) \oplus \ldots \oplus L_{n m}(l)$
$=L_{n 1}{ }^{1} \oplus \ldots \oplus L_{n 1}{ }^{l^{2}} \oplus \ldots \oplus L_{n m}{ }^{1} \oplus \ldots \oplus L^{l^{2}}{ }_{n m}$

Which is an even list of L_{n}. Hence any proper even list of sunlet graph L_{n} packs $G(l)$ for any positive integer l.
4.6 Theorem

If the graph $C_{r}\left[\bar{K}_{m}\right]$ decomposes into sunlet graph $L_{n}, n=r m, m$ even, then the graph $C_{r}\left[\bar{K}_{m l}\right]$ decomposes into sunlet graph $L_{n l}$ for any positive integer l.
Proof:
Suppose $C_{r}\left[\bar{K}_{m}\right]$ decomposes into m sunlet graphs L_{n} which follows from
lemma (3.2)and (3.3).It is sufficient to show that $L_{n}(l)$ can be decompose into sunlet graph $L_{n l}$ where $L_{n l}$ is a sunlet graph on $n l$ vertices. Next form sunlet graph $L_{n l}$ from $L_{n}(l)$.The cycle in
L_{n} give rise to $C_{\frac{n}{2}}\left[\bar{K}_{l}\right]$ in $L_{n}(l)$.
$C_{\frac{n}{2}}\left[\bar{K}_{l}\right]$ can be decompose into l cycles
$C_{\frac{n l}{2}}$ by lemma (3.2),(3.3).Then join
each vertex in each l cycles $C_{\frac{n l}{2}}$ to the
pendant vertices $x^{l}{ }_{i j}$ to get l sunlet
graphs $L_{n l}$ i.e
$L_{n}(l)=L_{n l 1} \oplus L_{n l 2} \oplus L_{n l l}$
Hence $L_{n l}$ decomposes $C_{r}\left[\bar{K}_{m l}\right]$ for any positive integer l.
4.7 Corollary

Let $G=C_{r}\left[\bar{K}_{m}\right]$ be a graph with sunlet graph decomposition,then any proper even list of sunlet graph $L_{n l}$ packs $G(l)$ for any positive integer l.

Proof:
Assume that proper list of sunlet
graphs $\delta=\left(L_{n l 1}^{1}, L^{2}{ }_{n l 1}, \ldots, L_{n l 1}^{l}, L_{n l 2}^{1}\right.$,

$$
\ldots, L_{n l 2}^{l}, \ldots, L_{n l m}^{1}, \ldots, L_{n l m}^{l}
$$

is the proper list of sunlet graphs $L_{n l}$. Let $L_{n 1} \oplus L_{n 2} \oplus \ldots \oplus L_{n m} \quad$ be a sunlet graph decomposition of G.i.e
$L_{n k} \approx L_{n}, k=1,2, \ldots, m$. By theorem (4.6),
$L_{n k}(l)=L_{n l k}^{1} \oplus L_{n l k}^{2} \oplus \ldots \oplus L_{n l k}^{l}$.
$L_{n l k}^{1} \approx L_{n l k}^{2} \approx \ldots \approx L_{n l k}^{l}$
Whence
$G(l)=L_{n 1}(l) \oplus L_{n 2}(l) \oplus \ldots \oplus L_{n m}(l)$
$=\left(L_{n l 1}^{1} \oplus L_{n l 1}^{2} \oplus \ldots \oplus L_{n l 1}^{l} \oplus L_{n l 2}^{1} \oplus_{\text {Ther }}\right.$
$\ldots \oplus L_{n l 2}^{l} \oplus \ldots \oplus L_{n l m}^{1} \oplus \ldots \oplus L_{n l m}^{l}$
efore any even list of sunlet graphs $L_{n l}$
packs $G(l)$.
4.8 Theorem

The graph $C_{r}\left[\bar{K}_{m}\right]$ can be decompose into sunlet graph L_{n}, if and only if n divides $r m^{2}, n=r m$ and m is even. Proof:
The necessary condition follows from lemma (3.6) that is the number of edges in $C_{r}\left[\bar{K}_{m}\right]$ is $r m^{2}$, so n must divides rm^{2} for a decomposition to occur.If $n>r m$, a vertex must be repeated within each sunlet graph which is impossible. If $n<r m$,then there is a vertex which does not appear in the sunlet graph which is also impossible for such decomposition to occur.So $n=r m$.
To show that if $n \mid r m^{2}$ then L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$, it is sufficient to show that if $r \mid n$ and $m \mid n$ then $n \mid r m^{2}$.
Case 1: r divides n
Write $n=r q^{2} t$ where t, q is a positive integer and from lemma (3.6),
$r q^{2} t \mid r m^{2}$,so $q t \mid m$, and we can write
$m=q q^{\prime} t$. Also $r q^{2} t=r q q^{\prime} t$,so
$q=q^{\prime}$. Next consider $C_{r}\left[\bar{K}_{t}\right]$, the degree of each vertex is $2 t$ which is even.Each vertex appears t times in the sunlet graph $L_{r t}$ decomposition which follows from lemma (3.2) and lemma (3.3).By theorem (4.4), the graph $C_{r}\left[\bar{K}_{q q^{\prime} t}\right]$ can be decompose into sunlet graph
$L_{r t}$.Applying theorem (4.6),we have that $C_{r}\left[\bar{K}_{q q^{\prime} t}\right]$ decomposes into sunlet graph $L_{r q q^{\prime} t}=L_{r q^{2} t}$ for $q=q^{\prime}$. Hence if r
divides n then $C_{r}\left[\bar{K}_{m}\right]$ has sunlet graph decomposition.
Case 2: m divides n
Write $n=m t^{\prime}$ for any positive integer $t^{\prime} \geq 3$ and $m=q q^{\prime}$
Case 2a: Suppose $m \equiv 2(\bmod 4)$ and let
$q=2$,then $q^{\prime} \equiv 1(\bmod q)$.By lemma (3.1)
$C_{t^{\prime}}\left[\bar{K}_{q q^{\prime}}\right]$ decomposes into sunlet graph
$L_{t^{\prime} q}$ and by theorem (4.6), $C_{t^{\prime}}\left[\bar{K}_{q q^{\prime}}\right]$
decomposes into sunlet graph
$L_{t^{\prime} q q^{\prime}}=L_{t^{\prime} m}$. Hence sunlet graph L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ for $r=t^{\prime}$.

Case 2 b : Suppose $m \equiv 0(\bmod 4)$. Let $q=$
2, then $q^{\prime} \equiv 0(\bmod q) . C_{t^{\prime}}\left[\bar{K}_{q q^{\prime}}\right]$
decomposes into sunlet graph $L_{t^{\prime} q}$ by lemma (3.1), also $C_{t^{\prime}}\left[\bar{K}_{q q^{\prime}}\right]$ decomposes into sunlet graph $L_{t^{\prime} q q^{\prime}}=L_{t^{\prime} m}$ by theorem (4.6).Hence sunlet graph L_{n} decomposes $C_{r}\left[\bar{K}_{m}\right]$ for $r=t^{\prime}$. Since sunlet graph $L_{r q q^{\prime}}$, decomposes $C_{r}\left[\bar{K}_{q q^{\prime}}\right]$ for both $q^{\prime}=$ positive odd integer and $q^{\prime}=$ positive even integer, therefore it is true for all positive integer q^{\prime}.Hence if m divides n then $C_{r}\left[\bar{K}_{m}\right]$ has sunlet graph decomposition. Since $q=2$ all through for $m=q q^{\prime}$,it follows that for sunlet graph L_{n} to decompose $C_{r}\left[\bar{K}_{m}\right], m$ must be an even integer which also follows from lemma (3.4) .

References

[1] B. Alspach, H. Gavlas, Cyle decomposition of $K n$ and $K n ; I, J$. Combin. Theory Ser.B,81 (2001), 77-99.
[2] M. Sajna, Cycle decomposition of $K n$ and $K n ; I$,Ph.D Thesis,Simon Fraser University 1999.
[3] N.J. Cavenagh, E.J. Billington, Decomposition of complete multipartite graphs into cycles of even length;Graphs and Combinatorics (2000) 16, 49-65.
[4] C.C. Linder, C.A. Rodger,
Decomposition into cycles II; Cycle systems
in contemporary design theory: a collectuin of surveys, J.H. Dinitz and D.R. Stinson (Editors), Wiley,New York, 1992, 325-369.
[5] R. Haggkvist, A lemma on cycle decompositions; Annals of Discrete Mathematics 27 (1985), 227-232.
[6] D. Froncek, P. Kovar, M. Kubesa, Decomposition of complete graphs into blown-up cycles Cm[2]; Discrete Mathematics 310 (2010),1003-1015.
[7] R. Anitha, R.S. Lekshmi, N-sun decomposition of complete,complete bipartite
and some harary graphs; Int. J. of Computational and Mathematical sciences 2 Winter (2008).
[8] D. Sotteau; Decomposition of Km;n ${ }^{3} \mathrm{Ka} m ; n$ into cycles (circuit) of length $2 k$, Journal of Comb. Theory,Series B 30,(1981),75-81.
[9] J.C. Bermond, O. Favaron, M. Maheo, Hamilton decomposition of cayley graphs of degree 4;J. Comb. Theory Ser. B 46,(1989),142-153.
[10] N.J. Cavenagh, Decomposition of complete tripartite graphs into k cycles; Australasian J. of Combinatorics 18 (1998) 193-200.
[11] R. Laskar, Decomposition of some composite graphs into hamilton cycles, Pro. 5th Hungarian coll. keszthely 1976, North Holland, 1978, 705-
716.
A. D. Akinola

Department of Mathematics, College of Natural Science, University of Agriculture, Abeokuta,Ogun State, Nigeria. email:abolaopeyemi@yahoo.co.uk

